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Abstract—Recently, regression analysis has become a popular tool for face recognition. Most existing regression methods use the

one-dimensional, pixel-based error model, which characterizes the representation error individually, pixel by pixel, and thus neglects

the two-dimensional structure of the error image. We observe that occlusion and illumination changes generally lead, approximately,

to a low-rank error image. In order to make use of this low-rank structural information, this paper presents a two-dimensional

image-matrix-based error model, namely, nuclear norm based matrix regression (NMR), for face representation and classification.

NMR uses the minimal nuclear norm of representation error image as a criterion, and the alternating direction method of multipliers

(ADMM) to calculate the regression coefficients. We further develop a fast ADMM algorithm to solve the approximate NMR model and

show it has a quadratic rate of convergence. We experiment using five popular face image databases: the Extended Yale B, AR,

EURECOM, Multi-PIE and FRGC. Experimental results demonstrate the performance advantage of NMR over the state-of-the-art

regression-based methods for face recognition in the presence of occlusion and illumination variations.

Index Terms—Nuclear norm, robust regression, sparse representation, alternating direction method of multipliers (ADMM), face recognition

Ç

1 INTRODUCTION

FACE recognition has aroused broad interest in pattern
recognition and computer vision areas during the past

20 years. Meanwhile, numerous face-representation and
classification methods have been developed. Recently, linear
regression (LR) analysis based methods have become a hot
topic in the face recognition community. Naseem et al. pre-
sented a linear regression classifier (LRC) for face classifica-
tion [1]. In fact, several previous works, such as the nearest
feature line [2], the nearest feature plane, and the nearest fea-
ture spacemethods [3], are all variants of LR basedmethods.

To avoid over-fitting, a regularization term is generally
imposed upon the LR model. There are two widely-used
regularizers: the L2-norm based regularizer and the
L1-norm based one. LR with the L2-norm regularizer is gen-
erally called Ridge regression, while LR with the L1-norm
regularizer is called Lasso, which is a popular model for
sparse representation. Wright et al. [4] presented a sparse
representation based classification (SRC)method. To obtain
more robustness, they further assumed noise is sparse and
built the extended SRC model. The model shows the robust
ability to deal with sparse random pixel corruption and
block occlusion. Wagner et al. [10] further extended the

SRC model and unified face alignment and recognition into
a single framework.

Some recent work, on the other hand, began to investi-
gate the role of sparsity in face recognition [13], [14], [15],
[16]. Yang et al. [15] gave an insight into SRC and provided
some theoretical support for its effectiveness. They argued
that it is L1 constraint rather than L0 (the inherent sparse
constraint) that makes SRC effective. Zhang et al. [16] ana-
lyzed the working principle of SRC and believed that the
collaborative representation strategy plays a more impor-
tant role than the L1-norm based sparsity constraint. They
presented a collaborative representation classifier (CRC)
based on Ridge regression. CRC, however, does not provide
a mechanism for noise removal, so it is not a robust method
for face recognition.

In the LRC, CRC and SRC models, the representation
residual is measured by the L2-norm or L1-norm of the error
vector. Such models inherently assume that the representa-
tion error follows a Gaussian or Laplacian distribution. How-
ever, in real-world face recognition cases, the distribution of
representation error ismore complicated [6], [7]. So, in theory,
the above mentioned models are not sufficiently robust for
expected noise. Towards this end, Yang et al. borrowed the
idea of robust regression [5] and proposed a regularized
robust coding (RSC) method [6], [7]. He et al. made use of the
correntropy induced robust error metric and presented the
correntropy based sparse representation (CESR) algorithm
[8], [9]. It is interesting that, although CESR and RSC are
developed from different motivations, in light of the fact that
correntropy can be viewed as an M-estimator with varying
kernel sizes, they are both in spirit of a sparse robust regres-
sion model. Recently, He et al. [34] built a half-quadratic
framework which unifies the two kinds of existing sparse
robust regression models: the additive model represented by
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SRC and the multiplicative model represented by CESR and
RSC. In addition, Naseem et al. further extended their LRC to
the robust linear regression classification (RLRC) using the
Huber estimator to deal with severe random pixel noise and
illumination changes [17]. All of these robust-regression-
related methods have been applied to real-world face recog-
nition problems and yielded promising results.

The existing robust regression methods mentioned above
all use the one-dimensional pixel-based error model, in
which the error on each pixel is characterized one by one,
individually. This model has two problems. First, it assumes
that pixel-wise errors are independent and identically dis-
tributed. This assumption is reasonable for randompixel cor-
ruption, where noise is added independently on each pixel.
However, in the cases of many practical face variations, such
as occlusion, disguise, or shadow caused by illumination
change, this assumption does not hold. For instance, in an
occlusion caused by a black scarf, pixel values are zeros. So,
the ideal representation errors in the occluded part are corre-
lated, because pixels in a local area of a real-world image are
generally highly correlated. (A related example is shown in
Fig. S-1 in supplemental materials, which can be found on
the Computer Society Digital Library at http://doi.10.1109/
TPAMI. 2016.2535218). Therefore, using the one-dimen-
sional pixel-based error model (such as SRC [4], RSC [6], [7],
Robust LRC [17] etc.) to address image classification with
occlusions is theoretically questionable.

Second, characterizing the representation error individu-
ally, pixel by pixel, neglects the whole structure of the error
image, since all pixel errors form an error image which may
contain meaningful structural information (e.g., the rank of
error image). In regression analysis based face recognition
methods, we use training images to represent a test image.
Ideally, the error image is a zero matrix, and thus it is natu-
rally low-rank. In more general cases, there exist illumina-
tion variations and occlusions in test images. Illumination
and occlusion are two critical factors that affect the perfor-
mance of face recognition. In practice, illumination changes,
particularly partial illumination variations such as shadows,
generally lead to a low-rank (or approximately low-rank)
error image, in contrast to the full-rank original image.
Occlusion, such as sunglasses and a scarf, also yields a low-
rank error image. The aforementioned existing regression
methods, characterizing the pixel-error individually, fail to
utilize the kind of structural information.

To make full use of the low-rank structural information of
error image, this paper presents a two-dimensional image
matrix based error model, matrix regression, in order to
make the image representation and classification straightfor-
ward. In contrast, previous methods—ridge regression,
Lasso or robust regression—are all vector-based regression
models. That is, for dealing with 2D image in the form of
matrices, we have to convert images into vectors in advance,
before using such regression models. In the converting step,
some structural information (e.g., the rank of error image)
might be lost. Our matrix regression model does not need
the matrix-to-vector converting step. It uses the structural
information of images by minimizing the rank of representa-
tion residual image to determine the regression coefficients.
The rank minimization problem is generally converted into
the nuclear norm minimization problem for optimization

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [39]. In this
spirit, we use theminimal nuclear norm of the representation
residual image as a criterion in our matrix regression model.
Thus, our method is named nuclear norm based matrix
regression (NMR).

The remainder of the paper is organized as follows: Sec-
tion 2 outlines the related work. Section 3 introduces the
nuclear norm based matrix regression model and presents
the alternating direction method of multipliers (ADMM) for
the model, and Section 4 further gives an accelerated ver-
sion of ADMM. In Section 5, we suggest the NMR based
classifier for robust classification. In Section 6, we conduct
experiments and comparisons with the state-of-the-art
methods. Finally, Section 7 concludes the paper.

2 RELATED WORK

With respect to the use of the structural information of errors,
in recent literature on face recognition, there are two papers
of note: Zhou et al. incorporated the Markov Random Field
model into the sparse representation framework for spatial
continuity of the occlusion [11]. Li et al. explored the intrinsic
structure of continuous occlusion and proposed the struc-
tured sparse error coding (SSEC) model [12]. The two meth-
ods share a two-step iteration strategy: (1) Detecting error
via sparse representation, and (2) Estimating error support
(i.e., determining the real occluded part) using graph cuts.
The difference is that SSEC uses more elaborate techniques
such as the iteratively reweighted sparse coding in the error
detection step and a morphological graph model in the error
support step for achieving better performance. However,
SSEC does not numerically converge to the desired solution;
it needs an additional quality assessment model to choose
the desired solution from the iteration sequence. Moreover,
SSEC contains many parameters to which outcomes are sen-
sitive, and which have a significant effect on performance.
Our NMR provides a unified framework to integrate error
detection and error support into one simple model. It just
has one parameter, which is easily tuned and relatively
insensitive to variations of databases.

Recently, structured sparsity was also applied to charac-
terize spatially contiguous occlusions [53], [56]. Structured
sparsity is a natural extension of the standard sparsity con-
cept in statistical learning and compressive sensing [54].
The L1-norms focus on the independent sparsity and do not
take into account the potential structural relationships
among variables. To induce the structured sparsity patterns,
a structured sparsity-inducing norm, built on overlapping
groups of variables, was presented [55] by Jenatton et al.
Based on structured spare regularization, a structured
sparse principal component analysis (PCA) was further
developed [56]. The structured sparse PCA encodes not
only sparsity but also higher-order priori structural con-
straints about the data. Mairal et al. [57] also considered a
structured sparsity-inducing regularization and used it to
learn dictionaries embedded in a particular structure. Actu-
ally, the topographic sparse coding [58] and topographic
map [59] can also be formulated as a dictionary learning
problem with a structured sparsity norm.

Although the structured sparse PCA which has been
applied to deal with the occluded faces shows robustness to
occlusions compared to non-negative matrix factorization
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[56], it was used as a feature extraction method rather than a
classifier. Motivated by the idea of structured sparsity, Jia
et al. proposed a structured sparse representation classifier
(SSRC) by introducing a class of structured sparsity-induc-
ing norms into the SRC framework [53]. They use a hierarchi-
cal tree-structured sparsity-inducing norm on the error
image of a test face, where overlapping groups of pixels are
from local patches of varying size and where each group
corresponds to a node of the tree. SSRC turns out to be more
effective than SRC for dealing with occlusions, since the str-
uctured sparsity-inducing norm is more suitable than the
L1-norm for characterizing the spatially correlated local part.

The structured sparsity-inducing norm, however, is more
complicated than the nuclear norm because it needs to pre-
define group structures, i.e., the set of overlapping groups
[55]. How to define a set of optimal groups for real-world,
complicated, nonzero patterns caused by occlusions and
illumination is a difficult problem. So, NMR is much sim-
pler and more practical than SSRC since it characterizes the
holistically low-rank structure of the error image by virtue
of the nuclear norm directly. More importantly, the struc-
tured sparsity-inducing norm generally uses an L2 or L1
norm as a measure within each group, neither of which can
alleviate the correlations between variables. Thus, although
the structured sparsity-inducing norm can induce nonzero
patterns, it is incapable of eliminating the correlations of
variables within the patterns. We know there are local corre-
lations among errors particularly in the case of occlusions.
The nuclear norm can alleviate these correlations via the
involved singular value decomposition (SVD),1 while the
structured sparsity-inducing norm fails to do this. From this
viewpoint, NMR should be more effective than SSRC in
handling the occlusions or illumination changes.

In addition, there are a number of illumination-invari-
ant face-recognition methods that have been developed.
For instance, Savvides et al. [60] presented the ‘Corefaces’
which links the best of principal component analysis and
advanced correlation filters for extracting illumination
tolerance features. Chen et al. [61] suggested an illumina-
tion normalization approach in which a discrete cosine
transform (DCT) is employed to compensate for illumina-
tion variations in the logarithm domain. These
approaches were demonstrated effective for face recogni-
tion with illumination variations, but they might not be
powerful for handling arbitrary occlusions. It should be
mentioned that in this paper, our focus is not on illumina-
tion invariant techniques for face recognition, but on
developing a general regression model which is more
robust than the existing regression models to occlusion
and illumination changes.

It should be mentioned that this paper is an extension
of our arXiv paper [63]. Our ICPR paper [64] is a sparsi-
fied version of [63], i.e., the L2 norm based regulariza-
tion term was replaced by L1 norm based one in the

model. Differing from our previous work, this paper
presents a fast ADMM algorithm to solve the NMR
model and gives detailed analysis on convergence rate
of the algorithm. An extended NMR model is developed
for dealing with the face alignment and classification
problems simultaneously. In addition, more experiments
are conducted to compare our algorithms with state-of-
the-art methods.

3 NUCLEAR NORM BASED MATRIX REGRESSION

MODEL AND ITS ADMM ALGORITHM

This section first presents the nuclear norm based matrix
regression model, and then uses the alternating direction
method of multipliers to solve the model. Finally, we give a
convergence analysis of the proposed algorithm.

3.1 Nuclear Norm Based Matrix Regression Model

Given a set of n image matrices A1; . . . ;An 2 Rp�q and an
image matrix B 2 Rp�q, let us represent B linearly using
A1; . . . ;An, i.e.,

B ¼ x1A1 þ x2A2 þ; . . . ;þ xnAn þ E; (1)

where x1; x2; . . . ; xn is a set of representation coefficients,
and E is the representation residual.

Let us define the following linear mapping from Rn to
Rp�q:

AðxÞ ¼ x1A1 þ x2A2 þ; . . . ;þ xnAn: (2)

Then, the formula (1) becomes

B ¼ AðxÞ þ E: (3)

The formula (3) or (1) gives a general form of a linear
matrix regression model, in contrast with the classical linear
vector regressionmodel.

Motivated by observations or requirements that the resid-
ual image AðxÞ � B at the optimal solution is typically low
rank (or approximately low rank) in many applications, we
would like to evaluate the regression coefficients via solving
the following nuclear norm approximation problem [27]

min
x

AðxÞ � Bk k�: (4)

Moreover, borrowing the idea of the Ridge regression,
we would like to add a similar regularization term to Eq. (4)
and obtain the regularized matrix regressionmodel

min
x

AðxÞ � Bk k�þ1
2� xk k22: (5)

We will discuss how to solve this model in the following
section.

3.2 ADMM Algorithm for NMR

The alternating direction method of multipliers or the
augmented Lagrange multipliers (ALM) method has
been applied to the nuclear norm optimization problems
[28], [29]. For more details of ADMM, see [30]. Moti-
vated by Hansson’s work [29], we here provide details

1. Ref. [62] proves that the horizontal 2DPCA transform can elimi-
nate the correlation between column vectors of image matrices, and the
vertical 2DPCA transform can eliminate the correlation between row
vectors of image matrices. If one uses one single error image as the
input of 2DPCA model, the horizontal and vertical 2DPCA transform
matrices are exactly the orthonormal matrices of SVD. So, SVD can
eliminate the correlation between rows and columns of the error image.
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of using ADMM to solve the regularized matrix regres-
sion problem.

The model in (5) can be rewritten as

minjjYjj� þ 1
2�jjxjj22 subject to AðxÞ � B ¼ Y: (6)

The augmented Lagrangian function Lm is defined by

LmðY; x;ZÞ ¼ jjYjj� þ 1
2�jjxjj22 þ Tr ZT AðxÞ � Y� Bð Þ� �

þ m
2jjAðxÞ � Y� Bjj2F ; (7)

where m > 0 is a penalty parameter, Z is the array of
Lagrange multipliers, and Trð�Þ is the trace operator. Note
that if m ¼ 0, Eq. (7) becomes the standard Lagrangian
function.

ADMM consists of the following iterations

(i) GivenY ¼ Yk and Z ¼ Zk, updating x by

xkþ1 ¼ argmin
x

LmðY; x;ZÞ: (8)

(ii) Given x ¼ xkþ1 and Z ¼ Zk, updating Y by

Ykþ1 ¼ argmin
Y

LmðY; x;ZÞ: (9)

(iii) Given x ¼ xkþ1 and Y ¼ Ykþ1, Updating Z by

Zkþ1 ¼ Zk þ m AðxÞ � Y� Bð Þ: (10)

The key steps are to solve the optimization problems in
Eqs. (8) and (9).

After some derivations, we can rewrite the augmented
Lagrangian function as

LmðY; x;ZÞ ¼ jjYjj� þ 1
2�jjxjj22 þ m

2jjAðxÞ
� ðBþ Y� 1

m
ZÞjj2F � 1

2mjjZjj2F : (11)

Based on the augmented Lagrangian function in Eq. (11),
Eq. (8) can be expressed as

xkþ1 ¼ argmin
x

m
2jjAðxÞ � ðBþ Y� 1

m
ZÞjj2F þ 1

2�jjxjj22
� �

(12)

Letting H ¼ ½VecðA1Þ; . . . ;VecðAnÞ�, we can rewrite
AðxÞ ¼Pn

j¼1 xjAj into the matrix form Hx. Denote

g ¼ VecðBþ Y� 1
m
ZÞ. Thus, Eq. (12) is equivalent to

xkþ1 ¼ argmin
x
jjHx� gjj22 þ �

m
jjxjj22

� �
: (13)

Since Eq. (13) is a standard Ridge regression model, we
can get its closed-form solution

xkþ1 ¼ ðHTHþ �
m
IÞ�1HTg: (14)

Based on the augmented Lagrangian function in Eq. (11),
Eq. (9) can be expressed as

Ykþ1 ¼¼ argmin
Y

1
m
jjYjj� þ 1

2jjY� ðAðxÞ � Bþ 1
m
ZÞjj2F

� �
: (15)

The optimal solution can be computed via the singu-
lar value thresholding algorithm [31]. Specifically, given

a matrix Q 2 Rp�q of rank r, the singular value decompo-
sition of X is

Q ¼ Up�rSVT
q�r;S ¼ diagðs1; . . . ; srÞ; (16)

where s1; . . . ; sr are positive singular values, and Up�r and
Vq�r are corresponding matrices with orthogonal columns.

For a given t > 0, the singular value shrinkage operator
is defined as follows

D&ðQÞ ¼ Up�rdiag fmaxð0; sj � &Þg1�j�r
� �

VT
q�r: (17)

Theorem 1. [31] For each Q 2 Rp�q and & > 0, the singular
value shrinkage operator in (17) obeys

D&ðQÞ ¼ argmin
Y

&jjYjj� þ 1
2jjY�Qjj2F

� �
: (18)

From Theorem 1, the optimal solution of (15) is

Y ¼ D1
m

AðxÞ � Bþ 1
m
Z

� �
: (19)

In summary, the core of ADMM algorithm for the
nuclear norm based matrix regression problem involves
two sub-problems: the ridge regression and the singular
value thresholding.

Boyd et al. [30] give the optimality conditions and stop-
ping criteria of the ADMM algorithm. Based on the results
in [29], [30], we use the following termination criterion: the
primal and dual residuals must be small, i.e.,

jjrkprijj2 � "pri and jjskdualjj2 � "dual (20)

where rkpri¼AðxkÞ�Yk�B, "pri¼ ffiffiffiffiffi
pq
p

"absþ"rel maxfjjAðxÞjjF ;
jjYjjF ; jjBjjFg, skdual ¼ mHT VecðYk � Yk�1Þ, and "dual ¼

ffiffiffi
n
p

"absþ
"reljjHT VecðZÞjj2:

Finally, we would like to further elaborate upon our
algorithm. If we fix penalty parameter m in the augmented
Lagrangian function, the updating x step via solving the
ridge regression problem can be computed more efficiently.

Looking back at Eq. (14), let M ¼ ðHTHþ �
m
IÞ�1HT , which is

fixed in each iteration, so it can be calculated and stored in
advance. Then, in each iteration for updating x, we only

need to update g ¼ VecðBþ Y� 1
m
ZÞ and carry out the

matrix multiplication Mg once. On the other hand, in the
iteration for updating Y, the main computation is consumed
for performing the singular value decomposition of the

matrix Q ¼ AðxÞ � Bþ 1
m
Z. Since Q has the same size as the

image matrix, the computational complexity of this step
only depends on the size of images.

The detailed ADMM algorithm for NMR is summarized
in Algorithm 1.

Algorithm 1 can be interpreted in the two-step itera-
tion strategy for robust face recognition as adopted in
[11], [12]. Step 3, updating x, is actually an error-detec-
tion step for determining the representation coefficients
and representation errors; and Step 4, updating Y, is
actually an error-support step for determining the real
corrupted part. So, we can say that NMR provides a uni-
fied framework to integrate error detection and error
support into one simple model.

YANG ET AL.: NUCLEAR NORM BASED MATRIX REGRESSION WITH APPLICATIONS TO FACE RECOGNITION WITH OCCLUSION AND... 159



Algorithm 1. ADMMAlgorithm for NMR

Input: A set of image matrices A1; . . . ;An and an image matrix
B 2 Rp�q, the model parameters � and m, the termination condi-
tion parameters "absand "rel.
1: LetH ¼ ½VecðA1Þ; . . . ;VecðAnÞ�. Compute

M ¼ ðHTHþ �
m
IÞ�1HT ;

2: Y0 ¼ �B, Zk ¼ 0, k ¼ 0;

3: Updating x: Let g ¼ Vec Bþ Yk � 1
m
Zk

� �
. xkþ1 ¼Mg;

4: Updating Y: Ykþ1 ¼ D1
m

Aðxkþ1Þ � Bþ 1
m
Zk

� �
;

5: Updating Z: Zkþ1 ¼ Zk þ m Aðxkþ1Þ � Ykþ1 � B
� �

;
6: If Eq. (20) is not satisfied go to Step 3.
Output: Optimal regression coefficient vector xkþ1

3.2.1 The Computational Complexity of the NMR

Algorithm

Given the training sample size n and the image size p� q, let
m ¼ p� q. The computational complexity of Step 3 isO(mn),
which is determined by the matrix multiplication Mg. The

computational complexity of Step 4 is O(min(p2q; pq2)),
which is determined by the singular value decomposition

of a p� q matrix Q ¼ AðxÞ � Bþ 1
m
Z. In the case that p ¼ q,

the computational complexity becomes O(m1:5). So, the
computational complexity of the NMR Algorithm is

Oðkðm1:5 þmnÞÞ, where k is the number of iterations.

3.3 Convergence Analysis

In this section, we will give a convergence analysis of
ADMM. Algorithm 1 is a special case of a more general class
of augmented Lagrange multiplier algorithms known as the
alternating directions methods [40]. The convergence of
these algorithms has been studied extensively (see, [41], [42]
and the many references therein, as well as discussions in
[28], [40]). In recent years, the existence of the saddle points
is widely assumed for the convergence of algorithms. For
instance, Boyd et al. investigated convergence of ADMM by
virtue of the properties of the saddle points, and give three
important results: Residual convergence, Objective conver-
gence and Dual variable convergence [33]. However, the
objective convergence cannot deduce the optimal point of
the iterative process. If the optimal point of the iterative pro-
cess could be identified, the iterative trend would be clearer.
Thus, we here mainly study the accumulation points of the
iterative variables for Algorithm 1.

Let Y
$
; x

$
;Z

$ð Þ be a saddle point of the follow-

ing Lagrangian function LðY; x; ZÞ ¼ Yk k� þ 1
2 � jjxjj22 þ

Tr ZT AðxÞ � Y� Bð Þ� �
, and qk ¼ Yk

�� ��
�þ �

2 xk
�� ��2

2
, q

$ ¼ Y
$k k�þ

�
2 x

$k k22, Rk ¼ A xk
� �� Yk � B, rk ¼ VecðRkÞ. According to

the analysis in [33], [43], finding the optimal solutions of
original and dual problems is equivalent to finding a
saddle point of the function L. Thus, Z

$
is dual optimal.

In addition, we know that Zk ! Z
$
, as k!1 from [44].

Theorem 2. If m > 0, then the sequence Yk; xk;Zk
� �� 	

gener-
ated by Algorithm 1 converges to a saddle point Y

$
; x

$
;Z

$ð Þ
of the Lagrangian function L.

The proof is given in supplemental materials, available
online.

Theorem 2 implies the convergence trend of the sequence

Yk; xk;Zk
� �� 	

generated by Algorithm 1. We know that the

convergence rate is another important concept, which reflects
the convergence speed of an iterative algorithm. The authors
of [45], [46] has showed that ADMM can achieve O 1=kð Þ
global convergence, where k is the number of iterations, under
a strong convexity assumption. Without this strong convexity
assumption, He and Yuan [47] presented the most general
result to date of O 1=kð Þ convergence rate for ADMM. Their
results only require that both objective-function terms are con-

vex (not necessarily smooth). Since here jjYjj� and 1
2�jjxjj22 are

both convex, Algorithm 1 can achieveO 1=kð Þ convergence.

4 FAST ADMM ALGORITHM

From Goldstein et al.’s work [46], we know that the ADMM
algorithm can be accelerated to achieve the optimal conver-
gence rate of O 1=k2ð Þ under the condition that both additive
terms in the objective function are strongly convex. How-
ever, the objective function of the NMR model does not sat-
isfy this condition because the first term AðxÞ � Bk k� is not
strongly convex. To address this problem, we construct an
approximate NMR model in which the objective-function
terms are both strongly convex. Fortunately, we can prove
that the optimal solution of the approximate NMR app-
roaches to that of NMR when the multiplier g ! 0.

4.1 Approximate NMR Model

The approximate NMRmodel is constructed as follows

minjjYjj� þ g jjYjj2F þ 1
2�jjxjj22

� �
þ 1

2�jjxjj22
subject to AðxÞ � B ¼ Y

(21)

Denoting u ¼ � 1þ gð Þ, the above model becomes

minjjYjj� þ g Yk k2Fþ1
2ujjxjj22 subject to AðxÞ � B ¼ Y (22)

In the following, we will show that minimizing the
approximate objective function f Y; xð Þ ¼ jjYjj� þ g Yk k2F þ
1
2ujjxjj22 is the same as minimizing the objective for problem

(6) in the limit of small g 0s.

Theorem 3. Let ðY$

g ; x
$

g Þ be the solution to (22) and ðY$
; x

$ Þ be
the solution to problem (6), then

min
g!0

Y
$

g � Y
$

���
���
2

F
þ x

$

g � x
$

���
���
2

2
¼ 0:

The proof of Theorem 3 is given in supplemental materials,
available online.

4.2 Fast ADMM Algorithm

Following the derivation of ADMM as shown in Section 3.1,
it is easy to obtain the ADMM algorithm for model (22).
Specifically, in the step of updating x, since Y and Z are
fixed, the additional term g Yk k2F does not affect the optimi-
zation of x. Thus, we can use Step 3 in Algorithm 1 for
updating x, as long as � is replaced by u in the definition of

M, i.e.,M ¼ ðHTHþ u
m
IÞ�1HT .
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In the step of updating Y for solving Model (22), since x
and Z are fixed, we have

Ykþ1
g ¼ argmin

Y

�
jjYjj� þ Tr ZT AðxÞ � Y� Bð Þ� �

þ m
2jjAðxÞ � Y� Bjj2F þ gjjYjj2F

�

¼ argmin
Y
jjYjj� þ m

2jjAðxÞ � Y� Bþ 1
m
Zjj2F þ gjjYjj2F � 1

2mjjZjj2F
� �

¼ argmin
Y
jjYjj� þ m

2 þ g
� �jjY� m

mþ2g
1
m
ZþAðxÞ � B

� �
jj2F þ const

� �

¼ argmin
Y

1
mþ2gjjYjj� þ 1

2jjY� m
mþ2g AðxÞ � Bþ 1

m
Z

� �
jj2F

� �
:

(23)

Recalling that in the step of updating Y for solving the
original model (6), we have

Ykþ1 ¼ D&ðQÞ ¼ Up�r diagðfmaxð0; sj � &Þg1�j�rÞVT
q�r;

whereQ ¼ ðAðxÞ � Bþ 1
m
ZÞ and & ¼ 1

m
.

Let us define Qg ¼ m
mþ2g Q ¼ m

mþ2gðAðxÞ � Bþ 1
m
ZÞ, &g ¼

m
mþ2g& ¼ m

mþ2g
1
m
. It is easy to know that Qg and Q share the

same singular vectors and the corresponding singular val-
ues satisfy s

g
j ¼ m

mþ2gsj; j ¼ 1; . . . ; r. Therefore, using Theo-

rem 1, it can be derived from Eq. (23) that

Ykþ1
g ¼ D&ðQgÞ ¼ m

mþ2gUp�r diag ðfmaxð0; sj � &Þg1�j�rÞVT
q�r

¼ m
mþ2gD&ðQÞ:

(24)

From Eq. (24), it is easy to understand the conclusion of
Theorem 4, because

Ykþ1
g ! Ykþ1;when g ! 0:

Based on the above analysis, we know that we can use a
similar ADMM algorithm, a modified version of Algorithm
1, to solve the approximate NMR model (22). The modifica-
tions include: (i) In Step 1, M is redefined as M ¼
ðHTHþ u

m
IÞ�1HT , and (ii) In Step 4 for updating Y: a multi-

plier m
mþ2g is added, i.e., the operator in Step 4 is replaced by

Ykþ1 ¼ m
mþ2gD1

m
ðAðxkþ1Þ � Bþ 1

m
ZkÞ.

An acceleration scheme was originally presented by Nes-
terov [48] for solving a convex programming problem with
a convergence rate of O 1=k2ð Þ. Subsequently, much work
has been done applying Nesterov’s concept to other first-
order methods. More recently, the Nesterov-type scheme
was also applied to accelerate the alternating direction
methods [46], [50]. Based on Goldstein et al.’s work [46], we
develop the fast ADMM Algorithm (Algorithm 2) for our
approximate NMR model.

In the accelerated case the primal residual is
unchanged, rkpri ¼ AðxkÞ � Yk � B. A simple derivation

yields the new dual residual skdual ¼ mAðxk � xk�1Þ. Based
on Lemma 6 in [47], we can use the following termina-
tion criterion:

jjrkprijj2 � "pri and jjskdualjj2 � "dual; (25)

where "pri ¼ ffiffiffiffiffi
pq
p

"abs þ "rel maxfjjAðxÞjjF ; jjYjjF ; jjBjjFg, and
"dual ¼ ffiffiffiffiffi

pq
p

"abs þ "reljjZjjF .

Algorithm 2. Fast ADMMAlgorithm for NMR

Input: A set of image matrices A1; . . . ;An and an image matrix
B 2 Rp�q, the model parameters �, m and g, the termination
condition parameters "abs and "rel.
1: LetH ¼ ½VecðA1Þ; . . . ;VecðAnÞ�. Compute

M ¼ ðHTHþ u
m
IÞ�1HT , where u ¼ � 1þ gð Þ;

2: x0 ¼ x̂0 ¼ 0;Z0 ¼ Ẑ0 ¼ 0;a0 ¼ 1, k ¼ 0;

3: Updating Y: Ykþ1 ¼ m
mþ2gD1

m
ðAðx̂kÞ � Bþ 1

m
ẐkÞ;

4: Updating x: Let g ¼ Vec
�
Bþ Ykþ1 � 1

m
Ẑk

�
. xkþ1 ¼Mg;

5: Updating Z: Zkþ1 ¼ Ẑk þ m Aðxkþ1Þ � Ykþ1 � B
� �

;

6: Updating a: akþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðakÞ2
p

2 ;

7. Updating x̂: x̂kþ1 ¼ xkþ1 þ ak�1
akþ1 xkþ1 � xk

� �
;

8. Updating Ẑ: Ẑkþ1 ¼ Zkþ1 þ ak�1
akþ1 Zkþ1 � Zk

� �
;

9. If Eq. (25) is not satisfied go to Step 3.
Output: Optimal regression coefficient vector x̂kþ1

4.3 Convergence Analysis

To discuss the convergence of the Fast ADMM Algorithm
for NMR, we need to introduce the concept of the strongly
convex function. A function f xð Þ is called a strongly convex
function with parameter hf > 0 if the following inequality

holds for all x; y in its domain and t 2 0; 1½ �:

f txþ 1� tð Þyð Þ � tf xð Þ þ 1� tð Þf yð Þ � 1
2hf t 1� tð Þ x� yk k22:

Intuitively, strong convexity means that a function lies
above its local quadratic approximation. From the definition
of the strongly convex function, it is not hard to derive that

Lemma 1. A function f xð Þ is strongly convex with parameter hf
if and only if the function x7!f xð Þ � hf

2 xk k22 is convex.
The proof is given in supplemental materials, available

online.
For Model (22), let PðYÞ ¼ jjYjj� þ gjYjj2F , Q xð Þ ¼ 1

2ujjxjj22.
Since jjYjj� is convex, by Lemma 1, we know both PðYÞ and
Q xð Þ are strongly convex functions. Meanwhile, it is easy to
see that the strong convexity parameters hP and hQ of PðYÞ
andQ xð Þ are 2g and u, respectively. In addition, the conjugate
of a convex function F, denoted F�, is defined as F�ðpÞ ¼
supu u;ph i � F uð Þ. From [46], we know that the fast ADMM

can achieve O 1=k2ð Þ convergence under the condition that
both objective-function terms are strongly convex. Therefore,
we have the following convergence theorem for Algorithm 2:

Theorem 4. If we choose m � 2gu2

rðHTHÞ2, then the iterates fZkg gen-
erated by Algorithm 2 satisfies

D Z
$ð Þ �D Zk

� � � 2 Ẑ1 � Z
$�� ��

m kþ 2ð Þ2 ;

whereD Zð Þ ¼ �P� Zð Þ �Q� �HTvecðZÞ� �� Z;Bh i is dual to
problem (22), Z

$
is a Lagrange multiplier that maximizes the

dual, and r HTH
� �

is the spectral radius of the matrixHTH.

Theorem 4 means that the Fast ADMM Algorithm for
NMR has a convergence rate of O 1=k2ð Þ, where k is the
number of iterations. Thus, the accelerated variant of
ADMM, Algorithm 2, exhibits faster convergence speed
than the conventional ADMM, Algorithm 1. Fig. 1 shows
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an example of removing the white-block occlusion of an
image via NMR, where ADMM (Algorithm 1) converges
after nearly 40 iterations while Fast ADMM (Algorithm 2)
only needs 20 iterations. Since Fast ADMM consumes
almost the same computation as ADMM in each iteration
step, Algorithm 2 is nearly two times faster than Algo-
rithm 1. Here, the CPU time of Fast ADMM is 0.0211 sec-
ond, while that of ADMM is 0.0412 second.

5 NMR BASED ROBUST CLASSIFICATION

NMR uses the nuclear norm to characterize the residual
image (error image) E. In this section, we first give justifica-
tions for why a nuclear norm is suitable for characterizing
the error image caused by occlusions or illumination varia-
tions. We then present the NMR based classifier, which can
handle well-aligned image recognition problems. We fur-
ther extend the NMR model to do face alignment and classi-
fication simultaneously.

5.1 Justification of Claim that Nuclear Norm
is Robust to Occlusions and Illumination

In this section, wewill provide a probabilistic explanation for
why we use nuclear norm to characterize the error images
caused by occlusions and illumination changes. Noticing
that in our motivation of modeling, we use the term of “low-
rank” because it is an intuitive concept for describing the
error image caused by occlusion. Actually, our model is not
limited to “low-rank” error images, because it does not opti-
mize the rank function directly but optimizes the “nuclear
norm” of the error image instead. Nuclear norm provides a
more flexible characterization of the error image than “rank”
function, because it is still useful for characterizing an
“approximately low-rank” error image, which may be alge-
braically full-rank, but many singular values of it are very
close to zero. For example, in the case of illumination
changes, assuming that the faces are Lambertian and gener-
ally of smooth geometry, the elements in the error image are
highly correlated. Therefore, the error image caused by illu-
mination changes is generally “approximately low-rank”.

We know that the nuclear norm of amatrix is the sum of all
singular values of the matrix, which is actually the L1 norm of

the singular value vector. From the probability distribution
point of view, we know that the L1 norm provides an optimal
characterization for random variables with the Laplacian dis-
tribution, while the L2 norm is optimal for a Gaussian distri-
bution [6], [7]. Therefore, if the singular values of an error
image satisfy the Laplacian distribution, the nuclear norm
will provide a good characterization of the error image.

Fig. 2 shows examples of the error images caused by occlu-
sions and illumination changes, where (a1) and (a2) are the
original images which can be viewed as the expected, recon-
structed image; (b1) and (b2) are, respectively, the corre-
sponding occluded image and the image with a different
illumination. The error image (c1) is the difference between
(a1) and (b1), and the error image (c2) is the difference
between (a2) and (b2). The former is low-rank, while the latter
is approximately low-rank. Fig. 2 e1 and e2 illustrate the error
image fitted by different distributions, where Gaussian and
Laplacian distributions are far away from the empirical distri-
bution. That is to say, the pixel-level errors do not follow Lap-
lace or Gaussian distribution, either for occlusion or
illumination change. However, Fig. 2 f1 and f2 show that sin-
gular values of the error image fit a Laplacian distribution
well, both for occlusion and illumination changes. These
examples show that the nuclear norm is more suitable for
characterizing the error image than either the L1 or L2 norm.
This observation provides us a probabilistic justification for
using a nuclear norm under occlusions and illumination
variations.

More instances of showing the robustness of nuclear-
norm-based matrix regression to illumination changes and
occlusions (including artificial occlusions and real-world
occlusions caused by glasses and scarfs) are given in supple-
mental materials, available online. In addition, since the
nuclear norm is more suitable for characterizing the error
image than other norms, we will use the nuclear norm of
the residual image as a similarity measure to design the rule
for classification.

5.2 NMR Classifier

Similar to the strategy of SRC, we use the training sam-
ples of all classes to form the set of regressors. Let
A1; . . . ;An be training sample images of all classes. For a
given test image B, we use all training samples to repre-
sent it and obtain the representation coefficient vector by
solving the NMR model (or the approximate NMR
Model) via Algorithm 1 (or Algorithm 2) and obtain the
optimal solution.

Based on the optimal solution x
$
, we get the reconstructed

image ofB as B̂ ¼ Aðx$ Þ, and the residual image E ¼ B� B̂.
Let di : R

n ! Rn be the characteristic function that selects
the coefficients associated with the ith class. For x 2 Rn,
diðxÞ is a vector whose only nonzero entries are the entries
in x that are associated with Class i. Using the coefficients
associated with the ith class, one can get the reconstruction

of B in Class i as B̂i ¼ A diðx$ Þð Þ. The corresponding class
reconstruction error is defined by

eiðBÞ ¼ jjB̂� B̂ijj� ¼ Aðx$ Þ �A diðx$ Þð Þk k�: (26)

The decision rule is defined as: if elðBÞ ¼ mini eiðBÞ, then
B is assigned to Class l.

Fig. 1. Comparison of convergence rate of the NNR (Algorithm 1) and its
fast version (Algorithm 2).
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5.3 Robust Face Alignment and Classification
with NMR

As mentioned above, NMR mainly concentrates on the clas-
sification of the aligned face images, which needs images in
both the training set and the test set to be well-aligned.

However, practically, the observed test image B0 is always
misaligned. In this section, we present an extended model
of NMR to deal with the face alignment and classification
problems simultaneously. Specifically, let us transform the
misaligned image B0 to a well aligned image B by

Fig. 2. Example images with occlusion and illumination changes and the corresponding distributions of the pixel-level errors and singular
values of the error image.
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B ¼ B0 	 t, where t is a nonlinear transformation which is
introduced to describe image deformation in the alignment
process [10]. Motivated by the work in [10], [51], [52], we
formulate our extended model as

minjjYjj� þ gjjYjj2F þ 1
2ujjxjj22 subject to ~AðxÞ � B0 	 t ¼ Y;

(27)

where ~A is the aligned training set, which can be calculated
through an alignment method as suggested in [52]. How-
ever, Eq. (27) is hard to solve since it is a non-convex optimi-
zation problem. Using a similar strategy as in [10], [51], [52],
we solve the problem via an iterative convex optimization
framework, which iteratively linearizes the current estimate
of t and seeks for representations like

minjjYjj� þ gjjYjj2F þ 1
2ujjxjj22

subject to ~AðxÞ � ðB0 	 t þMatðJDtÞÞ ¼ Y;
(28)

where J ¼ @
@t
VecðB0Þ 	 t 2 Rd�v is the Jacobian of VecðB0Þ 	 t

with respect to the transformation parameters t, d ¼ p� q is
the dimension of the image, and Matð�Þ is an operator con-

verting the vectorRd into amatrixRp�q andDt is the step in t.

Algorithm 3. Fast ADMM Algorithm for Solving the
Model in (28)

Input: A set of aligned training image matrices ~A1; . . . ; ~An and
an image matrix B0 2 Rp�q, the model parameters �, m, g and
initial transformation t0 of B

0, the termination condition param-
eters "abs and "rel.
1: LetH ¼ ½Vecð~A1Þ; . . . ;Vecð~AnÞ�. Compute

M ¼ ðHTHþ u
m
IÞ�1HT , where u ¼ � 1þ gð Þ;

2: x0 ¼ x̂0 ¼ 0;Dt0 ¼ Dt̂0 ¼ 0;Z0 ¼ Ẑ0 ¼ 0;a0 ¼ 1, k ¼ 0;
3: While not converged (k ¼ 0; 1; . . .) do

4: Updating Y: Ykþ1 ¼ m
mþ2gD1

m

~Aðx̂kÞ � ðB0 	 t þMatðJDt̂kÞÞ�

þ1
m
ẐkÞ;

5: Updating x: Let g ¼ Vec ðB0 	 t þMatðJDt̂kÞÞ þ Ykþ1�

�1
m
ẐkÞ. xkþ1 ¼Mg;

6: Updating Dt: Let f ¼ Vec ~Aðxkþ1Þ � Ykþ1 � B0 	 t þ 1
m
Ẑk

� �
.

Dtkþ1 ¼ ðJTJÞ�1JTf ;
7: Updating Z: Zkþ1 ¼ Ẑk þ m ~Aðxkþ1Þ � Ykþ1 � ðB0 	 t�

þMatðJDtkþ1ÞÞÞ;
8: Updating a: akþ1 ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðakÞ2
p

2 ;

9: Updating x̂: x̂kþ1 ¼ xkþ1 þ ak�1
akþ1 xkþ1 � xk

� �
;

10: Updating Dt̂: Dt̂kþ1 ¼ Dtkþ1 þ ak�1
akþ1 Dtkþ1 � Dtk

� �
;

11: Updating Ẑ: Ẑkþ1 ¼ Zkþ1 þ ak�1
akþ1 Zkþ1 � Zk

� �
;

12: End while
Output: Solution Ykþ1; xkþ1;Dtkþ1 to the model in (28)

The linearized formulation in Eq. (28) is a convex pro-
gramming problem over the deformation step Dt, the error
matrix Y and the coefficient vector x. A sub-problem is the
optimization of the deformation step Dt, which can solved
via least squares estimation. Algorithm 3 presents the fast
ADMM Algorithm for solving the model in (28). For more
details on the derivation of the algorithm, please refer to
our supplemental material, available online.

Algorithm 4 summarizes the procedure of our robust
face alignment and classification method. As we can see,

after solving problem (27), the optimized x
$
;Y

$
; t

$
are

obtained. Then, the test image B0 is assigned to the class
where the reconstruction error is the smallest.

Algorithm 4. Fast ADMM for Robust Face Alignment
and Classification with NMR

Input: A set ~A of aligned training image matrices and an image
matrix B0 2 Rp�q, the model parameters �; m; g and initial trans-
formation t0 of B

0.
3: While not converged do
4: Compute an optimal step Dt

$
by solving the model in (28)

via Algorithm 3.
5: Update t  t þ Dt

$
.

6: End while
7: Get the optimal solution x

$
;Y

$
; t

$
to the model in (27).

8: Compute the class reconstruction error: eiðB0Þ ¼ jjB̂� B̂ijj�
¼ ~Aðx$ Þ � ~A diðx$ Þð Þ�� ��

�:
Output: identityðB0Þ ¼ argminieiðB0Þ

6 EXPERIMENTS

Five publicly available databases, the Extended Yale B data-
base [35], the AR database [36], the Multi-PIE database [37],
the FRGC Database [38], and the EURECOM Kinect data-
base [65] are used in our experiments. The description of
these databases is given in supplemental materials, avail-
able online. The proposed methods, NMR (Algorithm 1)
and Fast NMR (Algorithm 2), are tested and compared with
state-of-the-art linear representation related classifiers: LRC
[1], CRC [16], SRC [4], SSRC [53], RLRC [17], CESR [9], RSC
[6], SSEC [12], half-quadratic with the additive form
(HQ_A), half-quadratic with the multiplicative form
(HQ_M) [34]. LRC, CRC and RLRC are tuned to achieve
their best performance by choosing the optimal parameters,
and the parameter settings of the other methods follow the
authors’ suggestions. The regression parameter for NMR is
chosen as � ¼ 1 and g ¼ 0:001 for Fast NMR. The penalty
parameter in all of our algorithms is chosen as m ¼ 1. It
should be mentioned that all experiments are done on the
original face images, without any image preprocessing and
feature extraction step.

6.1 Recognition and Verification with Random
Occlusions

In the first experiment, we use the similar experiment set-
ting as in [4] to test the performance of the proposed model.
Subsets 1 and 2 of the Extended Yale B are used for training
and Subset 3 for testing. Each test image is corrupted by a
randomly located square block of a “baboon” image with
varying block sizes. The block size determines the occlusion
level of an image. We conduct face recognition tests first
and shows the recognition rates of LRC, CRC, SRC, SSRC,
RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR and Fast
NMR under different occlusion levels in Fig. 3a. The images
on the top of Fig. 3a illustrate the occlusion levels varying
from 10 to 60 percent. We then perform face verification
tests and show the DET curve (a plot of false reject rate
against false accept rate) in Fig. 3b.

From Fig. 3a, we can see that the proposed NMR and Fast
NMR achieve very close results, and they significantly
outperform other robust methods such as SRC, SSRC, RSC,
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RLRC, HQ_M and SSEC, when the occlusion level is equal
to or larger than 50 percent. When the occlusion level is no
more than 30 percent, SRC, RSC, RLRC and HQ_M achieve
similar results with NMR. The performance of SSEC is good
when the occlusion level becomes high, but it has no advan-
tage when the occlusion level is relative low. The recogni-
tion rates of LRC and CRC drop fast with the increase of
occlusion levels; thus the two methods are sensitive to the
level of structural noise. From Fig. 3b, we can see the pro-
posed methods still achieve the leading results among all
methods in face verification task.

In the second experiment, we also use Subsets 1 and 2 for
training and Subset 3 for testing, but with occlusions of dif-
ferent kinds of objects: cup, dollar, cartoon mask, book,
flower and puzzle in test images (as shown in Fig. 4). The
recognition rate of each method is shown in Fig. 5. The pro-
posed NMR and Fast NMR achieve the best results among
all methods. This experiment demonstrates that NMR is
more robust than the others for face recognition with differ-
ent, contiguous occlusions.

In the third experiment, for the test images in Subset 3,
we impose another two special occlusions: a square black
block and a square block whose elements are random num-
bers between 0 and 255. Fig. 6 shows the recognition rates
of each method under various occlusion levels with the
black block and the random block. In general, the results in
Fig. 6 are consistent with those in Fig. 3. NMR and Fast

NMR always achieve robust performance and outperform
state-of-the-art methods in both occlusion cases. In Fig. 6a,
the performance difference between NMR and RSC (or
SSEC) is not as remarkable as that shown in Fig. 3 when the
occlusion level is over 50 percent. The recognition rate of
NMR is 57.3, 6.2, 4.0 percent higher than SRC, RSC and
SSEC when the occlusion level is 60 percent. In Fig. 6b, the
performance difference between NMR and RSC (or RLRC)
is remarkable when the occlusion level is larger than 40 per-
cent. NMR still achieves a recognition rate of 86.4 percent
when the occlusion level is 60 percent, which is 4.1, 22.8 per-
cent higher than SSEC and RSC.

Finally, for all of the above mentioned face recognition
experiments, we conduct the corresponding face verifica-
tion tests. The verification accuracy is measured in terms
of the DET curve and the equal error rate (EER), i.e., the
point where the false accept rate is equal to the false reject
rate. The EERs of all methods are shown in Table 1 and
the corresponding DET curves are shown in Fig. S-9 in
supplemental materials, available online. From Table 1
and Fig. S-9, available online, we can see that the verifica-
tion performances of different methods are generally con-
sistent with their recognition performances. Our methods

Fig. 3. (a) Recognition rates (percent) of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR and Fast NMR under different
levels of occlusion; (b) DET curves of all methods when the occlusion level is 50 percent.

Fig. 4. Sample images of one person with occlusions of different kinds of
objects.

Fig. 5. Recognition rates (percent) of LRC, CRC, SRC, SSRC, RLRC,
CESR, RSC, RSC, SSEC, HQ_A, HQ_M, NMR and fast NMR under
different, contiguous occlusions.
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always achieve the best verification accuracy among all
methods. These results further demonstrate the robust-
ness of the proposed methods.

6.2 Recognition with Real World Occlusions

In the first experiment, we evaluate the robustness of our
methods in dealing with a real disguise on the AR data-
base. Here, we select eight frontal face images without
occlusion, i.e., the first four images of Sessions 1 and 2 for
training. We construct two test sets: (i) Six images with
sunglasses from both sessions, and (ii) Six images with
scarves from both sessions. The classification results of
LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A,
HQ_M, NMR and Fast NMR are listed in Table 2. From
Table 2, we observe that NMR and Fast NMR achieve the
highest recognition rate for each test set. For test images
with sunglasses, where the occlusion level is relatively
low, the sparseness assumption holds so SRC can achieve
good results. Besides, in this case, SSRC, CESR and

HQ_M achieve encouraging results. There is no signifi-
cant performance difference between NMR and these
methods. However, when the occlusion level becomes
larger, as in the case of images with scarves, the perfor-
mance advantage of NMR becomes evident.

In the second experiment, we evaluate our methods on
another database with real world occlusions: the EURE-
COM Kinect database [65]. Here, 10 images without
occlusion in Sessions 1 and 2 are used for training, and
the rest 6 images with occlusion caused by sunglasses,
hand, and paper are for test. The recognition rates and
equal error rates of all the methods are listed in Table 3
(the corresponding DET curves are shown in Fig. S-10 in
supplemental materials, available online). From Table 3,
we can see clearly that the proposed NMR and Fast NMR
still achieve the best results among all methods. This
demonstrates that our NMR is more robust than others
to occlusions caused by hands with characteristics similar
to the face.

6.3 Recognition with Illumination Changes

In this section, we test the proposed method under different
illumination conditions. In the first experiment we choose
Subset 1 of the Extended Yale B database for training. As
we know, the extreme illumination change is a challenging
task for most face recognition methods. Therefore, Subsets 4
and 5 with extreme lighting conditions are used for testing.
Fig. 7 shows the recognition rates of all methods tested on
Subset 4 and Subset 5. For both subsets, NMR and Fast
NMR achieves the best results among all methods. Some
robust sparse representation methods like CESR, HQ_A,
HQ_M seem not very robust to extreme illumination
changes. SSEC, as a method designed exclusively for contig-
uous occlusion, is not suitable for extreme illumination
changes either. However, the classical linear regression
based method LRC and its robust version RLRC seem more
insensitive to illumination changes than robust sparse
representation methods.

Fig. 6. Recognition rates (percent) of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR and Fast NMR under the different
occlusion levels. (a) the case that test images are with the occlusion of black block; (b) the case that test images are with the occlusion of random block.

TABLE 1
Equal Error Rates of LRC, CRC, SRC, SSRC, RLRC, CESR,

RSC, SSEC, HQ_A, HQ_M, NMR and Fast NMR under Different
Occlusion Cases on the Extended Yale B Database

EER (%) “baboon”
Block

Different
objects

Black
Block

Random
Block

LRC 29.46 39.52 40.12 28.58
CRC 15.72 23.22 19.81 14.32
SRC 15.39 25.63 13.77 15.36
SSRC 11.93 21.20 13.28 8.78
RLRC 14.34 14.92 40.18 13.20
CESR 13.45 21.27 41.68 11.42
RSC 10.06 11.06 5.89 8.78
SSEC 11.73 18.79 12.24 8.66
HQA 13.56 20.42 33.82 13.88
HQM 10.74 16.47 30.24 9.40
NMR 7.31 9.10 1.72 7.81
Fast NMR 7.53 10.32 2.72 7.28
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We conducted the second experiment on the Multi-PIE
database. There are 249 subjects in Session 1, and 166,
160, 175 subjects in Sessions 2, 3 and 4, respectively. All
subjects of Session 1, each having 8 frontal neutral images
with slight illumination changes are used for training. All
subjects of Sessions 2, 3 and 4, each having 10 frontal neu-
tral images with different illumination variations, are
used for testing. Table 4 lists recognition rates of all meth-
ods for the three test sets. NMR and Fast NMR always
achieve the best results, but the robust sparse representa-
tion methods like SRC, SSRC, RSC and HQ_M also
achieve competitive results in these tests. The perfor-
mance of LRC, however, is not very good. Note that the
illumination conditions of images in the Multi-PIE data-
base are much better than those in the Extended Yale B
database as used in the preceding experiment. It seems
that SRC, SSRC, RSC and HQ_M are insensitive to rela-
tively slight illumination changes.

6.4 Experiment on the FRGC database

In this section, we choose a subset of the FRGC database,
which contains 220 persons and each person has 20 images.
These images are taken in different conditions such as large

illumination variations, low resolution of the face region,
and possible blurring. We use the first 10 images per class
for training, and the remaining for the tests. Here, the face
region of each image is first cropped from the original high-
resolution images and resized to a spatial resolution of
32� 32. The classification results of LRC, CRC, SRC, SSRC,
RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR and Fast
NMR are shown in Table 5. These results demonstrate the
effectiveness of the proposed method for face recognition in
the different conditions. SSEC is designed exclusively for
face recognition with contiguous occlusion, but its perfor-
mance is not competitive in general cases without occlusion.
In contrast, some other methods like CRC, RSC and HQ_M
achieve very good results in this experiment.

6.5 Comparison Analysis of Computation Time

In this section, we compare the running time of the pro-
posed NMR with state-of-the-art methods. Our program-
ming environment is Matlab 2011, and all algorithms are
implemented on a Core Duo 2.93 GHz with 4 G RAM desk-
top. We conduct face recognition experiments with
“Baboon” block occlusion at a 50 percent occlusion level on
the Extended Yale B database. The number of training

TABLE 2
Recognition Rates (percent) of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC,

HQ_A, HQ_M, NMR and Fast NMR on the AR Database

LRC CRC SRC SSRC RLRC CESR RSC SSEC HQ_A HQ_M NMR Fast NMR

Sunglass 92.8 93.5 94.4 95.4 94.6 95.0 89.2 79.0 94.7 95.0 96.9 96.9
Scarf 30.7 63.6 57.6 66.7 53.3 33.5 66.8 49.1 48.7 50.1 73.5 73.3

TABLE 3
Recognition Rates (RRs) and Equal Error Rates of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A, HQ_M,

NMR and Fast NMR on the EURECOM Kinect Database

LRC CRC SRC SSRC RLRC CESR RSC SSEC HQ_A HQ_M NMR Fast NMR

RR 48.4 59.0 59.0 69.2 67.3 62.5 69.9 61.5 69.9 70.8 75.0 75.0
EER 30.19 16.93 16.05 15.56 27.91 21.62 14.43 33.67 17.53 15.93 13.71 13.06

Fig. 7. Recognition rates (percent) of each classifier under different illumination conditions on the extended yale B database. (a) on the subset 4,
(b) on the subset 5.
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samples of each class varies from 3 to 18, with an interval of
3. The average running time (base-10 log of seconds) of rec-
ognizing one testing sample for each method is illustrated
in Fig. 8.

From Fig. 8, we can see that LRC and CRC are the fast-
est methods, because they only involve a linear regression
problem which has a close-form solution. But, the two
methods are not very robust, particularly when there are
high occlusion levels. CESR is also faster than NMR, but
its recognition performance is always significantly lower
than NMR. SSEC and RLRC perform as fast as NMR, but
SSEC is sensitive to illumination changes while RLRC is
sensitive to occlusions as demonstrated in foregoing
experiments. In contrast, the proposed NMR is a more
general face recognition algorithm. Compared to the halt-
quadratic based sparse representation methods HQ_A
and HQ_M, NMR is faster and more robust to occlusion
and illumination changes. The other robust methods such
as RSC, SRC and SSRC, are significantly more time-con-
suming than NMR. The empirical computational com-
plexity of RSC is Oðkðn2m1:3ÞÞ, where k is the number of

iterations, while that of SRC is Oðn2ðmþ nÞ1:3Þ) because it
needs to use an extra identity matrix in order to represent
the occluded or corrupted pixels [7], [4]. NMR has a

computational complexity of Oðkðm1:5 þmnÞÞ, which is
much lower than those of RSC and SRC. SSRC involves a
structured sparsity-inducing norm based optimization
problem, which seems to be computationally more expen-
sive than a nuclear norm based one. Fast NMR further
improves the convergence rate of NMR, and generally
needs half the number of iterations required by NMR.
Since Fast NMR consumes almost the same computation
as NMR in each iteration step, Fast NMR achieves a factor
of two speed improvement compared to NMR.

6.6 Experiments on Simultaneous Face Alignment
and Recognition

In this section, we conduct experiments to exhibit the
robustness of our method against misalignment, illumina-
tion variation, and contiguous occlusion. Here the CMU
Multi-PIE database is employed; it should be noted that the
test images used are all misaligned in the original resolution
of 640�480. All of the 249 subjects present in Session 1 are
used as training subjects. We compare with three closely
related methods: robust registration and illumination via
sparse representation (RASR) [10], misalignment robust
representation (MRR) [51], and robust face alignment and
structured sparse representation classification (RA-SSRC)
[53]. In addition, with all of the experiments, we manually
click outer-eye corners in all training images and crop them
to the size of 60 � 45 for all methods. The distance between
the two outer eye corners is normalized to be 37 pixels.

In the first experiment, we evaluate the robustness of our
method to deal with various levels of contiguous occlusion.
As described in [10], we choose the same frontal images of
seven illuminations {0, 1, 7, 13, 14, 16, 18} with neutral facial
expression from each subject as training images. Frontal
images of illumination {10} from Session 1 (the same session
used for training) are used as test images. A randomly
located block of each face image is replaced by the image
Baboon and we simulate various levels of contiguous block
occlusion from 10 to 50 percent. The left part of Table 6
shows the recognition rates of the four methods varied
using different occlusion levels. We can see that our method
performs best in all of the cases. Moreover, as the occlusion
rate gets higher, the recognition rates of the other three
methods drop rapidly, while ours seems to be more stable.

The second experiment is conducted to evaluate the
robustness of our method to deal with illumination

TABLE 4
Recognition Rates (percent) of LRC, CRC, SRC, RLRC, CESR,

RSC, SSEC, HQ_A, HQ_M and NMR on the Multi-PIE
Database under Different Illuminations

Session 2 Session 3 Session 4

LRC 76.4 67.0 74.2
CRC 82.4 71.8 80.2
SRC 82.7 73.6 82.0
SSRC 84.9 77.5 84.0
RLRC 80.8 70.9 79.3
CESR 76.6 64.9 76.2
SSEC 66.2 53.6 59.1
RSC 82.8 75.3 81.8
HQ_A 79.5 68.6 77.7
HQ_M 82.7 74.2 83.2
NMR 85.8 77.9 84.5
Fast NMR 85.8 78.2 84.6

TABLE 5
Recognition Rates (percent) of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, SSEC, HQ_A, HQ_M, NMR

and Fast NMR on the FRGC Database

LRC CRC SRC SSRC RLRC CESR RSC SSEC HQ_A HQ_M NMR Fast NMR

77.0 92.2 89.2 77.5 77.5 81.9 92.0 70.5 84.7 91.9 93.3 93.2

Fig. 8. Illustration of the average running time (base-10 log of seconds)
of recognizing one testing sample for each method on the extended yale
B database.
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variations. To fully exhibit the ability of our method with
respect to illumination variation, we choose seven frontal
images with slight illumination variation {05, 06, 07, 08, 15,
16, 17} from each subject as training samples. Another seven
frontal images with severe illumination variation {00, 01, 02,
11, 12, 13, 19} per subject from Sessions 1–4 are used as test
samples. The recognition rates of the four methods are
shown in the right part of Table 6. As we can see, our
method achieves remarkable advantages over other meth-
ods in all cases, which demonstrates the effectiveness of our
method for dealing with the task of illumination changes.

7 CONCLUSIONS AND FUTURE WORK

This paper investigates using nuclear norm to characterize
the occlusion and illumination variation caused error image
which has a two-dimensional structure and is generally low-
rank (or nearly low-rank). A nuclear norm based matrix
regression model is introduced, and the augmented
Lagrange multipliers method, and its accelerated version,
are developed for solving the model. The proposed NMR
classifier is examined on four popular face image databases:
the Extended Yale B, AR, EURECOM, Multi-PIE and FRGC,
and experimental results indicate that NMR is more robust
than state-of-the-art regression basedmethods for face recog-
nition with occlusions and illumination changes. Although
Fast NMR is faster than most robust regression methods, a
computationally more efficient algorithm is still required for
its real-world application. In addition, the question of
whether the nuclear norm based model is effective for more
complex noise and the question of how to extend the model
for general noise need further investigation.
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